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Abstract
Aerial survey is an important, widely employed approach for estimating free‐ranging 
wildlife over large or inaccessible study areas. We studied how a distance covariate 
influenced probability of double‐observer detections for birds counted during a heli‐
copter survey in Canada’s central Arctic. Two observers, one behind the other but 
visually obscured from each other, counted birds in an incompletely shared field of 
view to a distance of 200 m. Each observer assigned detections to one of five 40‐m 
distance bins, guided by semi‐transparent marks on aircraft windows. Detections 
were recorded with distance bin, taxonomic group, wing‐flapping behavior, and 
group size. We compared two general model‐based estimation approaches pertinent 
to sampling wildlife under such situations. One was based on double‐observer meth‐
ods without distance information, that provide sampling analogous to that required 
for mark–recapture (MR) estimation of detection probability, p̂, and group abundance, 
̂G, along a fixed‐width strip transect. The other method incorporated double‐ob‐
server MR with a categorical distance covariate (MRD). A priori, we were concerned 
that estimators from MR models were compromised by heterogeneity in p̂ due to 
un‐modeled distance information; that is, more distant birds are less likely to be de‐
tected by both observers, with the predicted effect that p̂ would be biased high, and 
̂G biased low. We found that, despite increased complexity, MRD models (ΔAICc 
range: 0–16) fit data far better than MR models (ΔAICc range: 204–258). However, 
contrary to expectation, the more naïve MR estimators of p̂ were biased low in all 
cases, but only by 2%–5% in most cases. We suspect that this apparently anomalous 
finding was the result of specific limitations to, and trade‐offs in, visibility by observ‐
ers on the survey platform used. While MR models provided acceptable point esti‐
mates of group abundance, their far higher stranded errors (0%–40%) compared to 
MRD estimates would compromise ability to detect temporal or spatial differences in 
abundance. Given improved precision of MRD models relative to MR models, and the 
possibility of bias when using MR methods from other survey platforms, we recom‐
mend avian ecologists use MRD protocols and estimation procedures when survey‐
ing Arctic bird populations.
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1  | INTRODUC TION

Ecologists typically consider a change in animal abundance as a 
metric of population health (Nichols & Hines, 2002). Use of aircraft 
for counting animals permits observers to draw inference about 
abundance over large areas that may be difficult to access other‐
wise (Seber, 1982:454). However, inferences drawn from counts 
of wildlife populations about abundance are often complicated by 
incomplete detection of animals: not all detectable animals present 
in the surveyed area are counted. As such, substantial effort has 
been devoted to developing survey protocols and methods of cor‐
rection for detection bias (also termed—visibility bias) in aerial sur‐
veys (Pollock & Kendall, 1987). In North America, aerial surveys of 
waterfowl have become an integral tool for population estimation 
and are guided largely by standardized protocols developed by the 
US Fish and Wildlife Service and Canadian Wildlife Service (1987). 
For example, a long‐term operational survey for duck abundance 
has been conducted over the prairies of the interior of the continent 
each May since 1955 (Smith, 1995); ducks are identified by species 
and counted during aerial surveys of 400 m fixed‐width transects 
divided into ~29 km segments from aircraft flying ~50 m above 
ground level at 145–170 km/hr. A subsample of these segments are 
surveyed by ground crews that also count ducks so that a visual cor‐
rection factor (VCF, i.e., the reciprocal of detection probability) can 
be computed to adjust all aerial counts to account for incomplete 
detection from the air. Other surveys, particularly in the Arctic or 
heavily forested habitats, use the same protocol for aerial counts but 
without ground counts due to remoteness and associated logistic 
constraints that impede access by ground observers. In such cases, 
count data from a single survey platform can be used to estimate de‐
tection probability (Koneff, Royle, Otto, Wortham, & Bidwell, 2008).

Historically, single platform methods were broadly classified as 
one of two types: (a) those that employ multiple observer proto‐
cols (e.g., Caughley & Grice, 1982; Cook & Jacobson, 1979; Grier, 
Gerrard, Hamilton, & Gray, 1981; Koneff et al., 2008), or (b) those 
that require only a single observer who records the perpendicular 
distance of detected groups of animals to the transect line (i.e., dis‐
tance sampling, DS; Buckland et al., 2001; Burnham, Anderson, & 
Laake, 1980). Double‐observer methods are analogous to mark–re‐
capture (MR) methods and exploit matched pairs of detections and 
non‐detections from two observers to estimate detection probabil‐
ities using, for example, a Lincoln‐Petersen estimator (Alpizar‐Jara 
& Pollock, 1996; Seber, 1982). Development of Horvitz–Thompson 
type estimators (Alho, 1990; Huggins, 1989, 1991) for mark–recap‐
ture data are a marked improvement over simple Lincoln‐Petersen 
estimators in that they allow investigators to control for variation 
in detection probabilities as a function of recorded covariates (e.g., 
distance, group size, species). Regardless, crucial assumptions of MR 

models are that observers independently detect animals and that de‐
tection probabilities are homogeneous for animals with the same de‐
tection covariates. These assumptions may be violated during aerial 
surveys where each observer has a shared field of view, and groups 
of animals that are visually distinct may be more likely to be detected 
by both observers than inconspicuous animals. For example, proba‐
bility of detection of a group of organisms by both observers within 
fixed‐width strip transects may vary with distance from the survey 
platform (Laake & Borchers, 2004). Not accounting for such sources 
of detection heterogeneity within estimation is well known to lead 
to negatively biased abundance estimates (Seber, 1982).

By contrast, DS procedures are insensitive to moderate hetero‐
geneity in detection probability owing to a “pooling robustness” 
property (Burnham et al., 2004). In the context of aerial surveys, the 
main weakness of conventional DS procedures is the assumption of 
perfect detection on the transect line (or, if distances are binned, the 
detection bin closest to the aircraft). This is untenable in many aerial 
surveys owing to the altitude of the aircraft and the complex and 
imperfect nature of the visual detection process. Several approaches 
exist to improve estimates of abundance by using distance data to 
reduce heterogeneity in detection. In the first, we can simply use 
recorded distances to animals as covariates within MR estimation 
(an approach we term MRD, for mark–recapture using categorical 
or binned distance). In the second, joint likelihoods can be specified 
for the mark–recapture data (detections/non‐detections) and for the 
distribution of observed distances. This approach is known as mark–
recapture distance sampling (MRDS; Borchers, Laake, Southwell, & 
Paxton, 2006; Borchers, Zucchini, & Fewster, 1998; Buckland, Laake, 
& Borchers, 2010; Burt, Borchers, Jenkins, & Marques, 2014; Laake 
& Borchers, 2004). When possible to implement, MRDS is prefera‐
ble because more assumptions about individual heterogeneity can 
be addressed. However, several features of our data set (notably, 
responsive movement of some animals away from the aircraft) made 
MRDS estimation challenging to implement. For purposes of this 
paper, we only provide direct comparisons of MR to MRD; we revisit 
this choice in the Discussion, where we compare MRD to MRDS. We 
note that MRD is equivalent to Burt et al.’s (2014) “MR FI” model, 
which uses distance as a covariate affecting detectability in MR. The 
only substantive difference is that MRD conditions on categorical 
distance data (i.e., distance is included as a factor) while the MR FI 
model conditions on continuous distance. However, unlike any of the 
Burt et al. (2014) “MRDS” models, the distribution of observed dis‐
tances is never explicitly modeled (e.g., to estimate the shape of the 
detection function).

Koneff et al. (2008) applied the double‐observer MR approach to 
waterfowl counts made from fixed‐width strip transects in forested 
areas of eastern North America and found that detection probability 
of ducks was related to individual observers, aircraft type, position of 
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observers within aircraft, and waterfowl group size. They suggested 
that MR methods were tractable in operational surveys; however, 
they also presumed that an additional covariate of aircraft distance 
from detections was important for reducing potential bias associ‐
ated with unaccounted for heterogeneity in detection probability. 
However, these authors concluded that it was not operationally 
tractable to record perpendicular distances to animal groups from 
fixed‐wing aircraft, data that are needed to apply MRD or MRDS 
estimation.

Past helicopter surveys have also used double‐observer ap‐
proaches to estimate detection probability of Arctic waterfowl 
(Hines & Kay, 2006; Hines, Wiebe Robertston, Kay, & Westover, 
2006) applied to counts made within 200 m of aircraft. In this paper, 
we address the recommendation by Koneff et al. (2008) to focus 
on the incorporation of distance data in aerial waterfowl surveys, 
while accounting for effects of other covariates including bird spe‐
cies, group size, whether birds were flying or not, and observer po‐
sition in a helicopter. Specifically, we explore the feasibility of using 
MRD compared to MR methods to estimate abundance or density 
of select species of waterfowl and other wildlife from a helicopter 
over Arctic habitats. In particular, we predicted that a disregard of 
distance as a source of heterogeneity in detection probability would 
result in overestimates of detection probability and underestimates 
of abundance, compared to an MRD approach that better accounts 
for detection heterogeneity.

2  | METHODS

2.1 | Field methods

From 17 to 20 June, 2014, we used a double‐observer approach 
while also recording distance to detections of wildlife observations 
in the Queen Maud Gulf Migratory Bird Sanctuary. Observations 
were made from a Bell 206 Long Ranger by a forward observer in 
the left front seat and a rear observer in the left back seat behind 
the forward observer. Before any observations, each observer used 
a water‐soluble marker to mark semi‐transparent lines on their re‐
spective helicopter windows corresponding to distance classes of 
1 = 0–40 m, 2 = 40–80 m, 3 = 80–120 m, 4 = 120–160 m, 5 = 160–
200 m, and 6 > 200 m (Figure 1). Hypotenuses of triangles with a 
common vertical side of 50 m, but horizontal distances of 40, 80, 
120, 160, and 200 m, are 64, 94, 130, 168, and 206 m, respectively. 
So, as the helicopter flew 50 m above ground level on this training 
session, each observer took a sighting to the ground with a range 
finder and marked a line collinear with the range finder and the ap‐
propriate hypotenuse distances to mark lines on the window with 
a grease pencil that represented binned perpendicular distances of 
40 m intervals.

During observations, the helicopter traveled between 100 and 
180 km/hr ground speed, at 50 m above ground level, consistent 
with US Fish and Wildlife Service and Canadian Wildlife Service 
(1987) protocols. Height above ground level was verified occasion‐
ally by the front observer using a range finder to determine vertical 

distance from ground, visible vertically through the left chin bubble 
of the aircraft, and communicated to the pilot whether an adjust‐
ment was required. Both observers were able to communicate via 
the aircraft intercom, although they were not visible to one another. 
Both observers recorded detections of wildlife by species, group 
size, whether birds were flapping their wings (usually flying, but oc‐
casionally running or stationary on the ground) or not, and class of 
distance perpendicular to the direction of travel by the helicopter 
(see above). Flapping behavior of birds was recorded because it was 
assumed that detection of flying groups could have been higher than 
of groups that were immobile and on the ground.

The forward observer did not communicate his observations to 
the rear observer. However, the rear observer communicated his 
observations via intercom to the forward observer, who recorded 
all detections made by either observer. If a detection of the same 
animal group was made by both observers, invariably the forward 
observer recorded his detection before the rear observer commu‐
nicated his detection to the forward observer. If the rear observer 
detected an animal, but the forward observer did not, then this was 
recorded by the forward observer as such. Thus, observations by 
each observer were made independently of one another. An ex‐
ample of communication by the rear observer to the forward ob‐
server is “2 white‐fronts flying Charlie,” representing a detection in 
the third distance bin, 80–120 m from the helicopter (see below). 
The time interval between detections of different groups was suf‐
ficiently long that chances for detections of different groups by ob‐
servers being erroneously treated as the same detection was very 
unlikely. In most cases, distance classes of the same detections were 
the same, although occasionally flying birds would move from one 
distance class where the forward observer detected the group of an‐
imals in a different (usually closer) class by the time the rear observer 
detected this same group; as well, there were also some distance bin 
mismatches between observers for bird groups that were not flap‐
ping their wings, suggesting a small amount of measurement error 
(Conn & Alisauskas, 2018).

F I G U R E  1  Example of distance classes marked nearest the left 
front seat of a Bell 206 Long Ranger helicopter
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2.2 | Analysis methods

2.2.1 | Data formatting

Our interest in this paper was to assess hypothetical bias in esti‐
mates from MR models relative to MRD models. Such models usually 
assume that covariates recorded by both observers (e.g., distance) 
are the same, so we needed to reconcile mismatching distance 
data prior to analysis (see Discussion for description of an alter‐
native approach). Let yio be a binary indicator for whether or not 
observer o detects waterfowl group i, and dio denote the distance 
bin recorded by observer o to group i. We included detection his‐
tories in the analyses if (a) yi1 = 1 and di1 ∈{1,2,3,4,5} (i.e., observer 
1 detects the animal in distance bins 1–5), or (b) yi1 = 0, yi2 = 1, and 
di2∈{1,2,3,4,5} (i.e., observer 1 misses the animal but observer 2 de‐
tects it in bins 1–5). The distance used for waterfowl group i was set 
to di = yi1di1 + (1 − yi1)di2 (i.e., giving preference to the first observer's 
distance determination). These protocols were an attempt to reduce 
possible bias associated with responsive movement. For instance, 
the original position and whether or not a group was within the strip 
width (0–200 m) was presumably more reliable when made by the 
first observer since birds would have had less opportunity to move 
away from the aircraft.

2.2.2 | Modeling double‐observer detections

We fit several MR and MRD models to double‐observer encounter histo‐
ries that were a function of different combinations of predictive covari‐
ates: group size (linear effect), species (categorical, nine levels), flying/not 
flying (categorical, two levels), distance bin (categorical, five levels), and 

observer (categorical, two levels). All models that included distance bin 
and observer effects also included their interaction. Note that our use of 
categorical distance bins permitted greater modeling flexibility, although 
at the cost of an increased number of parameters to estimate, compared 
to an approach where distance is modeled as a continuous effect.

Different models corresponded to different ways that data might 
be analyzed under different survey protocols. For example, the MR 
analyses without distance covariates could be fitted with data from 
fixed‐width strip transects where observers do not record perpen‐
dicular distance to an object (e.g., Hines & Kay, 2006; Hines et al., 
2006; US Fish & Wildlife Service & Canadian Wildlife Service, 1987). 
We fitted a total of 10 models to MR detection histories (Table 1).

We used the Huggins–Alho closed‐captures model (Alho, 1990; 
Huggins, 1989, 1991) to model group detection by each observer, 
such that

Here, β denotes a column vector of logit‐linear regression param‐
eters and X denotes an associated design matrix (see e.g., Draper & 
Smith, 1998). Under this framework, maximum likelihood is used to 
obtain estimates of the regression parameters, β. Estimates of the 
number of waterfowl groups (Gs), and total abundance of species s 
(Ns) can then be derived as.

yio∼Bernoulli(pio∕p
∗
i
),where

logit(pio)=X� , and

p∗
i
=1− (1−pi1) (1−pi2)

Type Model k LogL AICc ΔAICc

MRD Species + Group + Fly + Observer* 
Distance {MRD1}

20 −1024.5 2089.3 0.0

MRD Species + Group + Fly*Observer* 
Distance

28 −1017.3 2091.3 2.0

MRD Species + Group + Observer*Distanc
e

19 −1029.8 2098.0 8.7

MRD Group + Fly + Observer*Distance 12 −1040.8 2105.7 16.4

MR Species + Group + Fly + Observer 12 −1134.6 2293.4 204.1

MR Species + Group + Observer {MR1} 11 −1138.5 2299.1 209.8

MR Group + Observer + Fly 4 −1150.7 2309.4 220.1

MR Species + Group 10 −1145.3 2310.7 221.4

MR Species 9 −1151.6 2321.2 231.9

MR Null 1 −1172.6 2347.3 258.0

Notes. Models varied by inclusion of different combinations of predictor covariates, and whether 
terms were additive (separated with a “+”) or were interactive (separated with a “*”) on the logit scale. 
Predictor covariates were Species (categorical), Group (continuous), Fly (binary; wings not flap‐
ping = 0, wings flapping = 1), Observer (binary; front seat vs. rear seat of helicopter), and Distance 
(categorical; 5, 40 m distance bins). We present the number of parameters (k), log likelihood (LogL), 
and small sample AICc scores for each fitted model (Burnham & Anderson, 2002). We highlight (in 
bold) the best MRD model {MRD1} and the MR model {MR1} most appropriate for estimation of 
detection and abundance.

TA B L E  1   Mark–recapture models 
accounting for distance (MRD) versus 
mark–recapture models without distance 
data (MR) fit to double‐observer 
detections of waterfowl and other wildlife 
detected in the Arctic during aerial survey 
with a helicopter
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where Ωs is the set of waterfowl groups detected by at least one 
observer that are assigned to species s, and gi is the number of 
birds in the ith waterfowl group. Since our main focus here was to 
identify factors that affected detection, we only report estimates 
of ̂Gs here.

We implemented the Huggins–Alho procedure in Program 
MARK (White & Burnham, 1999) via the RMark package (Laake, 
2013) in the R computing environment (R Core Team, 2016). We 
limited observations to species categories for which we had ≥20 
detection histories: Cackling goose (Branta hutchinsii), king eider 
(Somateria spectabilis), long‐tailed duck (Clangula hyemalis), north‐
ern pintail (Anas acuta), rock and willow ptarmigan (Lagopus spp.), 
sandhill crane (Grus canadensis), tundra swan (Cygnus columbianus), 
loon (Gavia spp.), and white‐fronted goose (Anser albifrons). Each 
species or genus was modeled using a different “group” specification 
within the same analysis in order to increase precision of estimates 
by sharing information about detection probability across taxonomic 
groupings (see e.g., Conn, Arthur, Bailey, & Singleton, 2006). We 

used Akaike's information criterion (AIC; Akaike, 1974; Burnham & 
Anderson, 2002) to select among models.

We assessed bias of estimators from MR models that disregard 
distance (i.e., those that treat data as though collected on 200 m 
fixed‐width strip transects), against the highest‐ranked AIC model 
from our candidate set (which turned out to be an MRD model). We 
calculated anticipated relative bias of MR estimates, 𝜃̂, as

3  | RESULTS

Of 1,246 detections made by either observer, 427 were made 
by both observers, 432 by the front observer only, and 377 by 
the rear observer only. The number of observations made by the 
front observer versus rear observer was 251 versus 50 in bin 1 
(0–40 m), 209 versus 210 in bin 2 (40–80 m), 115 versus 181 in 
bin 3 (80–120 m), 138 versus 184 in bin 4 (120–160 m), 93 ver‐
sus 105 in bin 5 (160–200 m), and 53 versus 74 beyond 200 m, 
respectively. Notably, detection fell off as a function of distance 
for both observers but was depressed for the rear observer closer 
to the transect line because of visual obstruction to field of view 
(Figure 2). This was caused by the float of the helicopter, used for 

̂Gs=
∑

i∈Ωs

1∕p̂∗
i
, and

̂Ns=
∑

i∈Ωs

gi∕p̂
∗
i
, respectively

Relative bias = 100 ⋅

(

𝜃̂
MR− 𝜃̂

MRD

𝜃̂MRD

)

F I G U R E  2  Number of waterfowl 
detections (bars; pooled by species) 
for mark–recapture distance data 
obtained from a Bell 206 Long Ranger 
helicopter, together with empirical 
conditional detection probabilities 
(plotted as a percentage; points with 
lines). Observations are stratified by 
observer (1 = front seat, 2 = back seat), 
and whether waterfowl were flying or not. 
Empirical detection probabilities were 
conditional on detection by the other 
observer. For example, points in the first 
column of plots were determined by using 
detections and distances for observer 2 as 
trials for observer 1
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buoyancy when landing on water. The front observer had a less 
obstructed view of bin1.

Analyses of double‐observer detection histories within a 
Huggins–Alho analysis suggested an influence on detection prob‐
ability by all covariates considered (Table 1). In particular, MRD 
models (ΔAICc range: 0–16, Table 2) were far superior to MR mod‐
els without distance (ΔAICc range: 204–258, Table 2). Detection 
probabilities varied substantially by species, observer, distance 
from aircraft, whether birds exhibited wing‐flapping, and group size 
(Table 3). Detection probability declined with distance for the front 
seat observer, but was gamma‐shaped (unimodal) for the rear‐seat 
observer, whose field of view was partially obstructed by the left 
helicopter float (Figure 2). Overall, detection probability was higher 
from the front seat than the back, was higher for flying waterfowl 
than non‐flying waterfowl, and increased as a function of group size, 
as anticipated (Table 3). Most of the species effects overlapped, but 
it appeared that tundra swans had a higher, although imperfect, rate 
of detection while loons, long‐tailed ducks, and ptarmigan had lower 
detection probabilities than the other species.

We expected, a priori, that failure to account for distance should 
have resulted in overestimation of detection probability and under‐
estimated numbers of bird groups present on transects. Instead, the 
opposite tendency occurred: Failure to account for distance resulted 

in number of groups being consistently overestimated for all species 
but only moderately so (2%–5%), except for loons (16%). Failure to 
account for distance resulted in much greater species variation in its 
effect on estimates of standard errors for abundances, with either 
no difference for 3 species, or consistently much greater uncertainty 
(6%–40%) than if distance was included as a covariate.

4  | DISCUSSION

We addressed potential bias in double‐observer aerial surveys owing 
to detection heterogeneity induced by animal groups observed at dif‐
ferent distances from the aircraft. Such heterogeneity is known to 
cause negative bias in mark–recapture abundance estimators (Seber, 
1982), which is potentially problematic for aerial strip transect sur‐
veys as commonly implemented in North American waterfowl sur‐
veys. However, despite clear potential for such bias, our abundance 
estimates from models that accounted for distance effects {MRD} on 
observations from a helicopter were remarkably similar to estimates 
from models that ignored those distance covariates {MR}. However, 
precision of some estimates was reduced considerably in our specific 
application. We suspect that reasonable concordance between MR 
and MRD estimates was related to trade‐offs in visibility issues as‐
sociated with the particular configuration of the aircraft used as our 
survey platform. In particular, the presence of helicopter floats ob‐
viously obstructed the rear‐seat observer's field of view. Although 
detections by the rear observer for the closest distance bin were 
considerably fewer than by the forward observer's unobstructed 
view, the rear observer appeared to compensate for this difference 
by focusing greater attention on distance bins 3, 4, and 5, particularly 
detecting more flying birds than the forward observer (Figure 2). In 
addition, both observers detected fewer birds in distance bin 3 than 
in distance bin 4, contrary to expectation. Possibly, the requirement 
to scan across a 200 m field of view may induce both observers to un‐
intentionally focus greater attention at the extremes (closest and far‐
thest distances) of the transect than in the middle. Furthermore, the 
architecture of various fixed‐wing and helicopter aircraft can differ 
considerably, impacting the field of view for each observer. For exam‐
ple, bubble windows could reduce but not eliminate visibility issues 
associated with the presence of floats. Such unconscious idiosyn‐
crasies of human observer behavior in combination with particular 
visibility issues specific to airframe design and window placement re‐
inforce the fundamental requirement of any sampling design: that de‐
tection probability should be estimated in some fashion for improved 
inference, regardless of aircraft type used as a survey platform.

Further complications during sampling arise when there is re‐
sponsive movement of animals between distance bins between 
detections of the same animal group by each observer. Such re‐
sponsive movement can lead to (often positive) bias in estimates of 
abundance (Borchers, Marques, Gunnlaugsson, & Jupp, 2010; Conn 
& Alisauskas, 2018) from MRDS models, and can impede estimation 
of MRDS parameters that represent individual heterogeneity (Burt 
et al., 2014). Although MRDS models are preferable to MR or MRD 

TA B L E  2  Logit‐linear covariate effects and SE for the highest‐
ranked AIC mark–recapture model {MRD1} from Table 1

Effect Effect size (SE)

Intercept 0.50 (0.34)

Group size 0.08 (0.02)

Flying 0.59 (0.18)

Species‐KIEI 0.00 (0.24)

Species‐LTDU −0.41 (0.25)

Species‐NOPI 0.35 (0.37)

Species‐ROPT −0.36 (0.40)

Species‐SACR 0.27 (0.29)

Species‐TUSW 1.15 (0.32)

Species‐Loons −1.02 (0.51)

Species‐WFGO 0.20 (0.19)

Observer 2 −2.39 (0.25)

Observer 1:Distance 2 −0.56 (0.32)

Observer 2:Distance 2 1.80 (0.21)

Observer 1:Distance 3 −1.05 (0.33)

Observer 2:Distance 3 2.18 (0.27)

Observer 1:Distance 4 −1.11 (0.32)

Observer 2:Distance 4 1.68 (0.24)

Observer 1:Distance 5 −1.42 (0.35)

Observer 2:Distance 5 1.11 (0.27)

Notes. The intercept corresponds to detection of non‐flying Canada 
geese by observer 1 in distance bin 1, and the “Observer 2” effect is 
specific to detection bin 1 viewed rear seat of a Bell 206 Long Ranger 
helicopter with floaths (i.e., with obstructed view).
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models when assumptions are met, there was considerable evidence 
for responsive movement in our data set which led us to consider 
simpler MR and MRD models that did not include a probability mass 
function for the distance data. For comparison between MR and 
MRD models, we edited distance bin observations in favor of the 
front observer to eliminate any mismatches in this study. Clearly this 
was not ideal in practise, but permitted a test of past data collection 
methods without distances recorded, against an improved standard 
that included distance information. Our use of MRD compared to 
MR showed vast improvements of model fit to data. Further im‐
provement could likely be realized by explicitly modeling movement 
and measurement error with unedited records, as done by Conn and 
Alisauskas (2018). In particular, their analysis suggested residual 
presence of individual heterogeneity above and beyond the simple 
MRD formulation we used here.

Researchers have several options for integrating counts with de‐
tection probability during such surveys from which to draw inference 
about density or abundance in a study area. For example, it may be ad‐
vantageous to increase survey coverage by acquiring single observer 
count data from both sides of the aircraft (Hines et al., 2006). In this 
case, double‐observer protocols to estimate detection probability 
could be implemented for a portion of the survey, or during portions 
of flights that are “off‐transect” (Hines & Kay, 2006). For instance, 
one observer could re‐seat themselves behind the other observer, as 
done throughout our study. In an operational aerial survey, off‐tran‐
sect double‐observer data for MRD estimates of detection probability 
could be gathered when the aircraft must suspend transect coverage 
to travel to and from refueling sites, for example. Then, abundance or 
density could be estimated in an ad hoc fashion with the simple canon‐
ical estimator, for example N = C/p*, or via model‐based analogs (e.g., 
Miller, Burt, Rexstad, & Thomas, 2013; Conn, Laake, & Johnson, 2012).

Our Arctic study area differed in an important way from the 
double‐observer methods used by Koneff et al. (2008) in a forested 

study area, farther south. The methods used in our study do not 
account for birds that are hidden from the field of view (e.g., by 
vegetation) within the sampled strip. We believe that such avail‐
ability bias (Marsh & Sinclair, 1989) played no role for detecting 
birds that were most commonly observed on land in our study since 
vegetation was shorter than the birds under observation (Conkin 
& Alisauskas, 2013; Didiuk & Ferguson, 2005). However, detection 
probability was lowest for Loons and long‐tailed ducks, two species 
most often detected on water, and that tend to dive in response 
to approaching aircraft. King eider was another species most often 
detected on water, but their detection probabilities were similar to 
those of largely terrestrial cackling geese probably because their 
normal response was flight, rather than diving, in apparent eva‐
sive response to aircraft. Rock Ptarmigan also had lower detection 
probability, possibly due to the very cryptic plumage of females in 
particular.

We used relatively simple models for waterfowl detection data 
where species was a fixed effect on detection. Our study focussed 
on relatively common species, but to include rarer species, it would 
likely be necessary to borrow strength from an ensemble of species. 
For example, species could be treated as a random effect within a hi‐
erarchical modeling framework (see e.g., Sollman, Gardner, Williams, 
Gilbert, & Veit, 2016). For larger surveys, one may also wish to esti‐
mate species–habitat relationships (e.g., Conkin & Alisauskas, 2013), 
permitting prediction of abundance in unsurveyed locations (e.g., 
Miller et al., 2013, Sollman et al., 2016).

Our work suggested that past helicopter surveys that used only 
MR methods on fixed‐width transects without distance data (e.g., 
Hines & Kay, 2006; Hines et al., 2006) may have provided reasonably 
accurate inference about abundance. However, such tests between 
MR and MRD methods for estimating detection and bias should 
probably be done for other types of aircraft design and configura‐
tion that affect visibility. Data can be tractably gathered to model 

TA B L E  3  Estimates of unconditional detection probability, p̂∗, and number of groups, ̂G, for each of nine avian species in the Arctic region 
covered by aerial surveys for different models, together with standard error

Species

p̂∗ (SE) ̂G (SE) Relative bias (%)

Model{MRD1} Model{MR1} Model{MRD1} Model {MR1} p̂∗ ̂G SE ( ̂G)

̂GCAGO
0.80 (0.03) 0.78 (0.03) 345 (16) 357 (17) −3 3 6

̂GKIEI
0.80 (0.04) 0.78 (0.04) 154 (11) 158 (11) −2 3 0

̂GLTDU
0.70 (0.06) 0.65 (0.06) 207 (21) 218 (23) −7 5 10

̂GNOPI
0.87 (0.06) 0.83 (0.07) 41 (3) 43 (4) −4 5 33

̂GROPT
0.71 (0.10) 0.68 (0.10) 59 (11) 60 (11) −4 2 0

̂GSACR
0.85 (0.05) 0.84 (0.05) 81 (5) 85 (7) −2 5 40

̂GTUSW
0.96 (0.02) 0.91 (0.03) 65 (4) 66 (4) −5 2 0

̂GLOON
0.52 (0.15) 0.37 (0.12) 116 (39) 134 (48) −29 16 23

̂GWFGO
0.84 (0.03) 0.85 (0.02) 321 (10) 329 (12) 1 2 20

Notes. Estimates are from the highest‐ranked mark–recapture estimators accounting for distance (MRD1) and the highest‐ranked MR model that did 
not account for distance (MR1). Note that we present estimates of p̂∗ at mean values of detection covariates. Based on results in Table 1, we posit that 
Model {MRD1} was the closest approximation of truth, against which relative bias was evaluated.
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effects of different observers, responsive animal behavior, and er‐
rors in distance determinations (Conn & Alisauskas, 2018), but addi‐
tional covariates that presumably affect detection probability, such 
as airspeed, deviations from altitude, cloud coverage, habitat type 
etc., could also be recorded to the extent possible.

Overall, because of the added benefits of apparent reductions 
in bias and especially improvement precision for some species, 
we urge that surveys of waterfowl or other wildlife from either 
fixed‐wing aircraft or helicopters consider distance information in 
conjunction with double‐observer methods. Although we found 
that our MR estimator which ignored distance data did not result 
in appreciably biased estimates, the markedly improved estimates 
of precision when using DS in conjunction with double‐observer 
methods could improve ability to test for differences in abundance 
or density among regions or between years. Modeling both spatial 
and temporal change in population abundance is a central focus 
behind decisions about population health. Improved precision 
of estimates when MRD (this study) or MRDS methods (Conn & 
Alisauskas, 2018) are used provide added incentive for considering 
their application to data from aerial survey. We join other authors 
(e.g., Laake, Dawson, & Hone, 2008) in recommending that wildlife 
survey planners routinely collect distance data when conducting 
double‐observer surveys, if permitted by the configuration of the 
survey platform used and the behavior and mean group size of the 
species studied.
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